分数乘法一教案7篇

时间:
betray
分享
下载本文

通过教案,教师可以更好地规划教学活动与时间安排,教案的有效实施依赖于其与实际教学内容的紧密结合,确保学生的学习不被忽视,优好文网小编今天就为您带来了分数乘法一教案7篇,相信一定会对你有所帮助。

分数乘法一教案7篇

分数乘法一教案篇1

重点:

(1)理解分数乘以整数的意义

(2)理解并掌握分数乘以整数的计算法则

难点:

在计算的过程中,能约分的要先约分,然后再乘。

设计思想:

发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。

教学过程:

一、设疑激趣:

1.下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

2.计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==33=

3=这个算式表示什么?为什么可以这样计算?

教师板书++=3=

3.出示:(课件1)

这道题目又该怎样计算呢?

二、自主探索:

1.出示例1,读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、学生交流、质疑:

1.学生汇报,并说一说你是怎样想的?

方法a.++===(块)

方法b.3=++====(块)

2.比较这两种方法,有什么联系和区别?

(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)

教师根据学生的回答,板书++=3

3.为什么可以用乘法计算?

(加法表示3个相加,因为加数相同,写成乘法更简便。)

4.3表示什么?怎样计算?

(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)

5.提示:为计算方便,能约分的要先约分,然后再乘。

(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)

四、归纳、概括:

1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)

2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)

(根据学生的.回答,教师进行板书)

五、巩固、发展

1.巩固意义:

(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)

(2)改写算式:

+++=()()

+++++++=()()

(3)只列式不计算:3个是多少?5个是多少?

2.巩固法则:

(1)计算(说一说怎样算)

462148

(说一说,为什么先约分再相乘比较简便?以8为例来说明)

(2)应用题:

a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(3)对比练习:

a.一条路,每天修千米,4天修多少千米?

b.一条路,每天修全路的,4天修全路的几分之几?

3.发展提高:

(1)出示(课件1):说说怎样想?

(2)出示(课件2):说说怎样想?

分数乘法一教案篇2

一、教学目标。

1、使学生理解分数乘整数的意义与整数乘法意义相同。

2、使学生掌握分数乘整数的计算方法,能正确进行计算,明白计算过程中能约分的要先约分的道理。

二、教学重点。

使学生理解分数乘整数的意义及计算方法。

三、教学难点。

总结分数乘整数的计算方法,理解分数乘整数算式的意义。

四、教学过程。

(一)设疑激趣,提出问题

1、把9+9+9+9+9改成乘法算式。

2、把o.2+0.2+o.2+o.2改成乘法算式。

3、(1)口答整数乘法的.意义。

(2)求几个相同加数和的简便运算。

4、列式计算。

(1)5个12是多少?

12×5=

(2)12个1.5是多少?

1.5×12=

(3)3个是多少?

5、提出问题。

教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

板书课题:分数乘法(一)。

(二)引导探索,解决问题。

1、分数与整数相乘的意义。

(1)出示题目。

1个占1张彩纸的,3个占这张彩纸的几分之几?

(2)探索交流。

①用图示表示。

1个图案占这张彩纸的。3个图案占这张彩张的。

②用加法计算。

③用乘法计算。

(3)引导发现。

教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。

2、分数与整数相乘的计算方法。

(1)涂一涂,算一算。呈现题目。

(2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的联系。

(3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。

(4)试一试。

3、约分。

教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:

(1)在计算过程中,能约分的要先约分。

(2)最后结果应该是最简分数。

(三)巩固练习完成课文第3页“练一练”。

1、第1题。

完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。

2、第2题。利用教材提供的素材,教育学生节约用水。

3、第3题。

(1)让学生独立完成。

(2)同学之间互相交流、校对,发现问题,及时反馈。

(3)说一说计算的步骤、方法:

①分子与整数相乘作分子,分母不变。

②能约分的要先约分,再计算。

4、第4题。

(1)学生独立完成。

(2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。

5、第5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。

(四)作业选用课时作业。

分数乘法一教案篇3

教学内容:

课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。

教学重点:

学会找单位1

教学难点:

依题意画出线段图

教学目的:

1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2.培养学生分析能力,发展学生思维。

教学过程:

一、复习

1.先说下列各算式表示的意义,再口算出得数。

2.列式计算。

(1)20的是多少?

(2)6的是多少?

让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。

二、新授。

1.教学例1。

出示例1:学校买来100千克白菜,吃了,吃了多少千克?

(1)指名读题,说出条件和问题。

(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

先画一条线段,表示100千克白菜。

吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

教师边说边画出下图:

(3)分析数量关系,启发解题思路。

引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

(4)学生列式计算:=100(20)?=80

(5)再让学生分析一下数量关系。

(6)练一练:完成第18页做一做第1题。

评讲订正时,让学生分析一下数量关系。

2.教学例2。

出示例2:小林身高米,小强身高是小林的,

小强身高多少米?

(1)明确题意,指名读题,说出条件和问题。

(2)让学生画出线段图并标明条件和问题。

①要画几条线段表示题里的数量关系?

②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的身高。

教师边启发边画出如下线段图:

(3)分析数量关系,启发解题思路。

启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的`身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

(4)让学生列式计算。

(5)如果把上题改成下面的题:

小强身高米,小林身高是小强的倍,小林身高多少米?

问:哪条线段画得长一些?怎样画?

把谁看作单位1为什么?

怎样列式?

教师边启发边画出如下线段图:

(6)教师说明:

一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

指出:在这种情况下乘得的积大于原来的被乘数。

(7)做一做。

完成课本14页做一做的第3题。

三、巩固练习

1.完成课本第14页做一做的第3题。

学习列式计算后,指名让学生分析数量关系。

2.完成练习四的第5题。

说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

订正时指名分析。

四、全课小结。

今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

五.作业。

练习四的第1~4题。

分数乘法一教案篇4

教学目标:

知识与技能

1.理解分数乘整数的意义。

2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。

过程与方法

使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。

情感态度与价值观

1.感受数学与实际生活之间的联系,激发学习兴趣。

2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重点:

理解分数乘整数的意义,探究计算法则。

教学难点:

正确计算及约分方法。

教学过程:

一、以旧引新,唤醒认知

(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)

(二)口答

(三)感受分数乘整数的意义

21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。

二、出示问题,探索新知

1、自主学习红点1。

(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的.尾巴一共需要多少米的布条?指名口头列式。

(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。

(3)交流、质疑。

(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)

2、自主学习红点2。

(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。

(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。

3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)

三、分层练习,强化认知 .巩固分数乘整数的意义

1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。

2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。

3、明辨是非。

4、结合实际,解决问题。

(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

四、总结

本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。

分数乘法一教案篇5

重点:

1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

2.渗透对应思想。

难点:

1.理解这类应用题的解题方法。

2.用线段图表示分数应用题的数量关系。

教学过程:

一、复习、质疑、引新

1.说出、、米的意义。

2.列式计算:

20的是多少?6的是多少?

学生完成后,可请同学说一说这两个题为什么用乘法计算?

3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

二、探索、质疑、悟理

1.出示例1(也可以结合学生的实际自编)

学校买来100千克白菜,吃了,吃了多少千克?

①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。

③画图:(课件一演示)补:把100千克当做什么?(单位1)

画图说明:

a.量在下,率在上,先画单位1

b.十份以里分份,十份以上画示意图。

c.画图用尺子,用铅笔。

④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

学生可能会出现下面解答方法:

解法一:用自己学过的整数乘法做

(千克)

解法二:(千克)

在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的'意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

2.巩固练习

六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?

订正时候强调1)把哪个数量看作单位1?

2)为什么用乘法计算?

3.学习例2

例2小林身高米,小强身高是小林的,小强身高多少米?

在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

(课件二演示)

先画单位1

再画单位1的几分之几

画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

列式:(米)

答:小强身高米。

4.改变例2

改变例2的条件和问题成为下题(可让学生完成)。

小强身高米,小林身高是小强的倍,小林身高多少米?

改编后,可让学生独立画图完成。

(米)

三、归纳、总结

1.今天所学题目为什么用乘法计算

2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

四、训练、深化

1.先分析数量关系,再列式解答

①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

2.提高题

①一桶油400千克,用去,用去多少千克?还剩多少千克?

②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

五、课后作业:练习五1、2、3

六、板书设计:

分数乘法应用题

100==80(千克)

答:吃了80千克。

(米)

答:小强身高是米。

分数乘法一教案篇6

教学目标

知识与技能

结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。

过程与方法

通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

情感态度与价值观

通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点 理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点 推导算理,总结法则。

教法与学法 直观演示法

教学准备及手段 根据例题制作的挂图、投影片或多媒体课件。

教学内容:

教材第3页及相关教学内容”

教学过程:

一、复习导入

1、计算下列各题并说出计算方法。

×4 ×4 ×14×

2、引入:这节课我们来继续学习分数乘法的问题。(板书课题)

二、探索新知

(一)一个数乘分数的意义

1.投影出示例题2。

(1)问题一:3桶水共多少升?

指名列出算式:12×3。

提问:你是怎么想的?

启发学生得出:求“3桶水共多少升?”就是求3个12l,也就是求12l的3倍是多少。(2)问题二:桶水共多少升?

指名列出算式:12×。

提问:根据什么列示的?

启发学生思考:桶就是半桶,求桶是多少升?就是求12l的一半是多少,也就是求12l的是多少。

(3)问题三:桶水共多少升?

指名列出算式:12×。

提问:你是怎么想的?

启发学生思考:求桶是多少?就是求12l的是多少。

2.结合上面的几个问题,你知道“12×”和“12×”这两个算式表示的意义分别是什么吗?

12×表示12l的是多少:12×表示12l的是多少。

3.总结:一个数乘分数的意义。

一个数乘几分之几表示的是求这个数的几分之几是多少。

4.完成教材第3页“做一做”。

引导:这道题求吃了多少千克,也就是求3千克的是多少千克。

(二)分数乘分数的计算方法。

投影出示例题3。

李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。

1.问题一:种土豆的面积是多少公顷?

(1)提问:求“种土豆的面积是多少公顷?”实际上就是求什么?怎样列示呢?

(实际上就是求公顷的是多少公顷,列示是:×。)

(2)探究×的计算方法。

①让学生拿出准备好的一张正方形纸表示一公顷,先画出它的,表示公顷。

②再涂出公顷的。

引导理解:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。

③观察交流。

观察手中的长方形纸,想一想,公顷的是多少公顷,你是怎么想的?

先让学生在小组内交流,在组织全班交流。

通过交流得出:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。也就是把1公顷平均分成(2×5)份,取其中的1份,即×1==。

板书:×===(公顷)

2.问题二:种玉米的面积是多少公顷?

⑴学生独立列出算式:×

⑵提问:“×”等于多少呢?你能用颜色表示的吗?

⑶学生动手操作,交流计算方法和思路。

与前面一样,也是把这张纸平均分成(2×5)份,不同的是要取其中的3份,可以得到:×===(公顷)

3.分数乘分数的计算方法。

先小组讨论,再汇报交流。

计算法则:分数乘分数,用分子相乘的积作分子,用分母相乘的积分母。(板书)

三、巩固练习。

1.教材第4页“做一做”第1题。

这道题是有关一个数乘分数的意义的练习。

组织练习时,可以先让学生独立阅读理解,在教材上填一填。再指名汇报,并让学生说一说是怎么想的。

2.教材第5页“做一做”第2题。

这是一道看图计算的练习,皆在通过练习,培养学生的观察能力,加深对分数乘分数计算方法的理解。

组织练习时,可以先让学生看图填一填,再让学生说一说思考过程。

3.教材第5页“做一做”第3题。

这道题是运用所学的分数乘法计算知识解决实际问题,在加深对一个数乘分数的意义理解的同时,又可以巩固整数乘分数的计算方法。

4.教材第6页“练习一”第4、5题。

先学生独立计算,并让学生说一说是怎么想的。

四、全课小结。

作业设计 练习二第3、4题。

板书设计 分数乘法

12×3

想:求3个12l,也就是求

12l的3倍是多少。⑴种土豆的面积是多少公顷?

12××===(公顷)

想:求12l的一半,就是求⑵种玉米的面积是多少公顷?

12l的是多少。×===(公顷)

12×分数乘分数,用分子相乘的积作分子,

想:求12l的是多少。用分母相乘的积作分母。

分数乘法一教案篇7

教学内容:

人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:

掌握分数乘整数的计算方法。

教学难点:

理解分数乘整数和一个数乘分数的意义。

教学准备

课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)

3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?

预设: 生1:每个人吃个,3个人就是3个相加。

生2:3个个相加也可以用乘法表示为。

提出质疑:3个相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的.和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法

1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?

预设: 生1:按照加法计算=(个)。 生2:(个)。

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

二、巩固练习,强化新知

1.例1“做一做”第1题 师:说出你的思考过程。

2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 l的和是多少。 预设2:还可以说成求12 l的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(l)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 l的一半,就是求12 l的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 l的是多少。”在这里都是把12 l看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)

五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;也可以列成 × ,表示 。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2.比较练习

(1)一堆煤有5吨,用去了,用去了多少吨?

(2)一堆煤有吨,5堆这样的煤有多少吨?

3.拓展练习

1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

六、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

分数乘法一教案7篇相关文章:

一年级游戏教案6篇

一年级下册教案最新8篇

小学音乐一年级上册教案8篇

单位一教案模板6篇

小学数学一年级教案最新6篇

一年级下册教案通用5篇

幼儿中班六一活动教案6篇

幼儿中班六一活动教案5篇

五一劳动班会教案精选6篇

五一劳动班会教案6篇

分数乘法一教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
76985